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ABSTRACT  Let Z be an algebraic p cycle homologous to zero
in an algebraic complex manifold V. Associated to Z is a linear func-
tion ¥ on holomorphic (2p + 1)-forms on V, modulo periods, that
vanishes if Z is algebraically equivalent to zero in V. I give a for-
mula for v for the case of V the jacobian of an algebraic curve C
andZ =C — C' (C' =“inverse” of C) in terms of iterated integrals
of holomorphic 1-forms on C. If C is the degree 4 Fermat curve,
I use this formula to show that C — C’ is not algebraically equiv-
alent to zero.

Section 1. I consider the problem of deciding whether two
homologous algebraic p-cycles (p > 0) C,C’ in a compact non-
singular algebraic variety V over C are algebraically equivalent
[i.e., roughly speaking, the cycle C — C’ can be “continuously”
(algebraically) deformed into the cycle 0 (1)]. A direct method
for proving algebraic nonequivalence is to consider the linear
function v on holomorphic (2p + 1)-forms w on V given by [pw,
where D is a singular chain of topological dimension 2p + 1
whose boundary is C — C'. If this linear function is not in the
group of linear functions generated by integration over (2p +
1)-cycles, then C,C’ are not algebraically equivalent [compare
with the letter of W. Hodge (1951) quoted in ref. 2]. Here, 1
carry this out for the example of C, the degree 4 Fermat curve
F:x* + y* = 1, V, its jacobian J; and C’, the image of F under
the automorphism of J given by the group-structure inverse.
The problem reduces to the real number

. f‘ [ J' dt ] dx
b o (1 _ t4)l/2 (1 _ x4)3/4
1

Ik

dt dx g

1 .
- t4)1/2] [J; (1 — x4)3/4:|

Because Eq. 1 is not an integer, C = F is not algebraically
equivalent to C' in J(C). If Eq. 1 isirrational, then C — C’ would
be of infinite order modulo algebraic equivalence. The method,
based on ref. 3, is to give an explicit formula for [, (modulo
periods of holomorphic 3-forms) in terms of iterated integrals
on C of holomorphic 1-forms with periods in a subring of C and
then specialize to curves whose normalized period matrix has
entries in a quadratic imaginary field (gaussian numbers for F),
in which case the subgroup of periods is discrete and so the in-
tegrals need only be numerically approximated.

This direct method has not been carried out previously. In-
stead, there is the method used by Griffiths (4) to give the first
examples of algebraically nonequivalent homologous cycles that
has been used in all subsequent papers on this subject—i.e.,
to consider families of varieties V, and cycles C, depending on
the parameter ¢ and differentiate with respect to t. The type of
result thus obtainable is that algebraic nonequivalence holds for
generict (i.e., the complement of some countable union of sub-
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varieties of the parameter space). In this way, Ceresa (5) re-
cently proved algebraic nonequivalence of C,C’ in J(C) for ge-
neric C, while ref. 3 gives another way of doing this (non-
vanishing of the differential of v).

Section 2. Let C be a smooth complete curve over C, p, be
a base point, and C C J(C) be the standard embedding with p,
going to zero. I identify HY(C;Z), H'(J;Z), and the group % of
real valued harmonic 1-forms (on C or J) with periods in Z and
let H"? [respectively, H3)] denote holomorphic 1-forms (re-
spectively, those with periods in the gaussian integers). Then,
H%(J;Z) = A¥(¥,) and I denote by P, the subgroup of primitive
classes (those annihilated by the cup product with the Kihler
form g — 2 times). P, is generated by elements dh; /\ dh, /\
dh,, where dh; € ¥; and are Poincaré duals in C of three dis-
joint simple closed curves on C (see ref. 3). We define a homo-
morphism »:P — R/Z associated to the cycle C — C’ on J by

v(dh; A dhy A\ dhy) = J dhy A dhy A\ dhy (mod Z),

D

where D = C — C'. vis the Abel-Jacobi image of C — C’ in
the intermediate jacobian of J; it is independent of the choice
of base point p, because I work with primitive cohomology.

Fordh,, i=1,2,3, in ¥ such that [ dh, /\ dh, = 0, I define
an iterated integral I(dh;,dhy,dh;) as follows (3): Let y €
m,(C;p,) represent a homology class Poincaré dual to dhy; be-
cause [¢ dh, /\ dhy = 0, let dh, /\ dh, = dqon C and nbe a
1-form on C orthogonal to all closed 1-forms (and therefore
unique). Then, I(dh,,dh,,dh) will mean [,(h,dh, — n)(mod Z);
considering 7 as a path parametrized by ¢ € [0,1], this last in-
tegral will mean

LA

According to ref. 3,
V(dhl /\ dh2 AN dha) = 2I(dh1,dh2,dh3)

if dh, /\ dhy /\ dh is a generator of P as before. I can be con-
sidered as a homomorphism

(¥z @ Hy)' ® ¥z — R/Z,

where (%, ® ¥,)’ is the kernel of #, ® %, — Z given by dh,
® dhy— [ dh; /\ dh,.

I can now extend scalars from Z to Z(i) so that ¥, = ¥,
® Z(i) = complex harmonic 1-forms with periods in Z(i) and Py,
= P, ® Z(i). Then, v:Pg; — C/Z(i) is still given by 2I, where
I: [%Z i) ®Z i) %Z(i)]' ®Z(i) %Z(i) —-C / Z(l) and %Z(i) is isomorphic
to m(Cipo) @ Z).

Assume now that H® = HzJ ®;, C, where H5{ denotes the
holomorphic 1-forms with periods in Z(i). Further, let g = 3,
so that H' has basis 6,,0,,0; with the 6, a Z(i)-basis of HLY.
Then, vrestricted to holomorphic 3-forms is given by one com-
plex number v(6, N\ 6, /\ 3)mod Z(i) as follows: let K,...,Kq

dhl(t)] dhy(x) — n(x)} mod Z.
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be a Z-basis of H,(C;Z) and a,,. . .,a¢ be correspondmg elements
of m,(C;p,). Let the Poincaré dual of 05 be 25 AK;, A; € Z(i).
Then,

6
V(6 N\ 6, /\ 65) = z Ajf (61,6,), 2]

9

where [,,(8;,0;) denotes the iterated integral [§ [[56,]6, (and
n=0 because 6N, = 0)

Section 3. Let C = F:x! + y* = 1. I will follow ref. 6: Let
Nrs,t = xr—lys—4dx Let

)
"7112/3 44

1-i 11
11;:( 2t)ﬂ121/3<2 é)
*_<l—) B(l 1
N3 = 9 17211/ 2 4)

where B(r,s) is the B function Tl

L(r+s)
represents F as 4-sheeted covering branched over i, s = 0, 1,
2, 3. Make cuts in the x plane from i° radially out to %, defining
sheet s as that on which y = #* when x = 0. Choose as base point
(x =1, y = 0), denoted 1. Let a € ,(F;1) be the path from 1
to i on sheet 1 followed by i to 1 on sheet 0: a = (1i);:(i1),; this
is the basic path used in ref. 6. Let K, be the homology class
of a; then, the automorphisms A(x,y) = (ix,y), B(x,y) = (x,iy)
give us the following canonical homology basis

K, = a, Ky = Aa, K, = B%a, K, = A™'Ba,
K5 = A’B%, Ks=AB7'a, [3]

. Projection to the x plane

with intersection numbers K,,_; O Ky, =1 = —K,, 0 Ky, _y,

other K. OK; = 0.
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Table 1. Periods of §; over k,

K, K, K K, K K¢
0,  -i 1 i —i i 1
8 0 0 1+ 1 1+i -1
8 0 i 0 i 1+i  i-1

Let01=2n’f,.02 (1 = i)m3 — D, 6= (1 —i)(n% — 7}).

Then, [, nf= - é and the periods.of the 6; over K, are as given

in Table 1. The 6, are then a Z(i) basis of Hz). The Poincaré dual
of 6,, defined by PD(6,) O K; = [, 65, 1s

PD(Oz) = K3 ( l)K4 - K5 - (1 + i)KG. [4]

We can now calculate »(6; /\ 85 /\ 6,) as the linear combination
of iterated integrals (Eq. 2) with coefficients A; from Eq. 4, giv-
ing

v(0 N\ O, N\ 8) = —16i f (n1,n3) [modZ(i)]. (5]

The integral [5] is transformed by the automorphism o(x,y)
= (y/xVi,1/xi) (and o} = n3, om; = —in}, on} = in3)
into an integral from 0 to 1 on sheet 0 given by —i times Eq.
1 if we take into account the B factors used to define 7} Nu-
merical calculation gives the value [1.2435683 + 0.00576] x
(—i) for Eq. 5. A more accurate value is 1.24178137867 . . . .

Spencer Bloch has asked whether one could give examples for curves
C defined over Q. I wish to thank him, Ron Donagi, and Gerry Wash-
nitzer for conversations.
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